Tesla Scientific - Discover The True Wireless
Method Of Symmetrical Co-Ordinates Applied To The Solution Of Polyphase Networks by Eric Dollard
Electromagnetic Induction And Its Propagation by Eric Dollard
Posted on Leave a comment

Iron-Gallium Magnetoelastic Energy Source

20 years ago, the Navy created a magnetoelastic material that produced efficient electricity. When this material, Galfenol, is physically impacted, it produces a magnetic fields.

Galfenol can produce up to 80 megawatts of power per cubic meter under strong impacts! Not only does this material produce a magnetic field when hit, a magnetic field applied to the material will cause it to change shape – so it works both ways – and at a 70% conversion efficiency.

One of the first things that comes to mind is to possibly use the Galfenol in conjunction with Nitinol – the metal that changes shape with heat. Our Energy Times newsletter has an entire article on Nitinol with some recommended links.

Maybe we have the materials necessary for a perpetual motion machine? Perhaps Galfenol can create electricity that heats a resistor that causes the Nitinol to bend. That bending could in turn impact the Galfenol to create the magnetic field. At that point, the Nitinol cools and goes back to the original shape. The magnetic field can cause electricity to produce heat to warm the Nitinol causing it to bend and repeat the process.

This is obviously not a completely serious suggestion but is food for thought since it seems all the necessary attributes to do something like this is sitting right there in these materials.

You can read the whole article here on the Iron-Gallium material: http://phys.org/news/2015-09-iron-gallium-alloy-power-generation-device.html

Electrodynamic Seismic Forecasting – A Simplified Approach by Griffin Brock
Tesla Scientific - Discover The True Wireless
Three Phase Distribution System Representation by Griffin Brock